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The past decade has witnessed the emergence of a new breed of
human–computer interfaces that combines several human language
technologies to enable humans to converse with computers using
spoken dialogue for information access, creation, and processing.
In this paper, we introduce the nature of these conversational inter-
faces and describe the underlying human language technologies on
which they are based. After summarizing some of the recent progress
in this area around the world, we discuss development issues faced
by researchers creating these kinds of systems and present some of
the ongoing and unmet research challenges in this field.
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I. INTRODUCTION

Computers are fast becoming a ubiquitous part of our
lives, brought on by their rapid increase in performance and
decrease in cost. With their increased availability comes
the corresponding increase in our appetite for information.
Today, for example, nearly half the population of North
America are users of the World Wide Web, and the growth
is continuing at an astronomical rate. Vast amounts of useful
information are being made widely available, and people are
utilizing it routinely for education, decision making, finance,
and entertainment. Increasingly, people are interested in
being able to access the information when they are on the
move—anytime, anywhere, and in their native language.
A promising solution to this problem, especially for small,
handheld devices where a conventional keyboard and mouse
can be impractical, is to impart human-like capabilities
onto machines so that they can speak and hear, just like the
users with whom they need to interact. Spoken language is
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attractive because it is the most natural, efficient, flexible,
and inexpensive means of communication among humans.

When one thinks about a speech-based interface, two
technologies immediately come to mind: speech recog-
nition and speech synthesis. There is no doubt that these
are important and as yet unsolved problems in their own
right, with a clear set of applications that include document
preparation and audio indexing. However, these technolo-
gies by themselves are often only a part of the interface
solution. Many applications that lend themselves to spoken
input/output—inquiring about weather or making travel
arrangements—are in fact exercises in information access
and/or interactive problem solving. The solution is often
built up incrementally, with both the user and the computer
playing active roles in the “conversation.” Therefore, several
language-based input and output technologies must be
developed and integrated to reach this goal. The resulting
conversational interface1 is the subject of this paper.

Many speech-based interfaces can be considered conver-
sational, and they may be differentiated by the degree with
which the system maintains an active role in the conversation.
At one extreme aresystem-initiative, or directed-dialogue,
transactions, where the computer takes complete control of
the interaction by requiring that the user answer a set of pre-
scribed questions, much like the touch-tone implementation
of interactive voice response (IVR) systems. In the case of
air travel planning, for example, a directed-dialogue system
could ask the user to “Please say just the departure city.”
Since the user’s options are severely restricted, successful
completion of such transactions is easier to attain, and indeed
some successful demonstrations and deployment of such sys-
tems have been made [5].2 At the other extreme areuser-ini-
tiative systems, in which the user has complete freedom in
what they say to the system, (e.g., “I want to visit my grand-
mother”) while the system remains relatively passive, asking

1Throughout this paper, we will use the termsconversational interfaces,
conversational systems, andspoken dialogue systemsinterchangeably.

2Nuance Communications: http://www.nuance.com.
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Fig. 1. Transcript of a conversation between an agent (A) and a
client (C) over the phone. Typical conversational phenomena are
annotated on the right.

only for clarification when necessary. In this case, the user
may feel uncertain as to what capabilities exist, and may,
as a consequence, stray quite far from the domain of com-
petence of the system, leading to great frustration because
nothing is understood. Lying between these two extremes are
systems that incorporate amixed-initiative, goal-oriented di-
alogue, in which both the user and the computer participate
actively to solve a problem interactively using a conversa-
tional paradigm. It is this latter mode of interaction that is
the primary focus of this paper.

What is the nature of such mixed initiative interaction?
One way to answer the question is to examine human–human
interactions during joint problem solving [29]. Fig. 1 shows
the transcript of a conversation between an agent (A) and
a client (C) over the phone. As illustrated by this example,
spontaneous dialogue is replete with disfluencies, interrup-
tion, confirmation, clarification, ellipsis, co-reference, and
sentence fragments. Some of the utterances cannot be under-
stood properly without knowing the context in which they ap-
pear. As we shall see, while present systems cannot handle
all these phenomena satisfactorily, some of them are being
dealt with in a limited fashion.

Should one build conversational interfaces by mimicking
human–human interactions? Opinion in this regard is some-
what divided. Some researchers argue that human–human di-
alogues can be quite variable, containing frequent interrup-
tions, speech overlaps, incomplete or unclear sentences, in-
coherent segments, and topic switches. Some of these vari-
abilities may not contribute directly to goal-directed problem
solving [99]. For practical reasons, it may be desirable to ask
users to modify their behavior and interact with the system
in a way that is more structured. However, one may argue
that users may feel more comfortable with an interface that
possesses some of the characteristics of a human agent. As

Table 1 Statistics of Human–Human Dialogues in a Movie
Domain [29]. Annotated Dialogue Acts are Sorted by Customer
Usage and Include Frequency of Occurence and Average World
Length

Fig. 2. Histograms of utterance length for agents and clients in
tasks of information access over the phone.

is the case with many other researchers, we have taken the
approach of developing a human–machine interface based
on analyses of human–human interactions when solving the
same tasks. Regardless of the approach, we believe, as do
others, that studying human–human dialogue and comparing
it to human–machine dialogue can provide valuable insights
[7].

Over the years, there have been many large corpora of
human–human dialogues collected and analyzed (e.g., [1],
[2], and [29]). For example, Table 1 shows statistics of anno-
tated dialogue acts computed from human–human conversa-
tions in a movie information domain [29]. These statistics
show that nearly half of the customers’ dialogue turns were
acknowledgment (e.g., “okay,” “alright,” “uh-huh”).3 As an-
other example, consider the histograms of the lengths of the
utterances per turn for agents and clients shown in Fig. 2 [29].
The statistics were gathered from the transcripts of more than
100 hours of conversation, in more than 1000 interactions,
between agents and clients over the phone on a variety of in-
formation access tasks. More than 80% of the clients’ utter-
ances are 12 words or less, with a preponderance of very short
utterances. Closer examination of the data reveals that these
short utterances are mostly back-channel communications,
such as “okay,” “I see,” etc. It is important to note that some
of the spontaneous speech phenomena serve useful roles in
human–human communication, and thus should conceivably
be incorporated into conversational interfaces. For example,
initial disfluent speech can serve an attention-getting func-
tion, and filled pauses and back-channel acknowledgment
provide reassurances that the utterance is understood or one
partner of the conversation is still working on the problem.

3An average dialogue consisted of more than 28 turns between the cus-
tomer and the agent.
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Fig. 3. Generic block diagram for a typical conversational
interface.

The past decade has witnessed the emergence of some
conversational systems with limited capabilities. Despite
our moderate success, the ultimate deployment of such
interfaces will require continuing improvement of the core
human language technologies (HLTs) and the exploration
into many uncharted research territories. The purpose of this
paper is to outline some of these new research challenges.
To set the stage, we will first introduce the components of
a typical conversational system and outline some of the
research issues. We will then provide a thumbnail sketch
of the recent landscape, discuss some development issues
concerning creation of these systems, and present some of
the ongoing and unmet research challenges in this field.
While we will endeavor to cover the entire field, we are un-
avoidably going to draw heavily from our own experience in
developing such systems at MIT over the past ten years (e.g.,
[30], [50], [58], [87], [92], [102], [109], and [110]). This is
a consequence more of familiarity then of ethnocentricity.
Interested readers are referred to the recent proceedings of
the Eurospeech Conference, the International Conference of
Spoken Language Processing, the International Conference
of Acoustics, Speech, and Signal Processing, the Interna-
tional Symposium on Spoken Dialogue, and other relevant
publications (e.g., [22]).

II. UNDERLYING TECHNOLOGIES ANDRESEARCHISSUES

A. System Architecture

Fig. 3 shows the major components of a typical con-
versational interface. The spoken input is first processed
through the speech-recognition component. The natural lan-
guage component, working in concert with the recognizer,
produces a meaning representation for the utterance. For
information retrieval applications illustrated in this figure,
the meaning representation can be used to retrieve the appro-
priate information in the form of text, tables, and graphics. If
the information in the utterance is insufficient or ambiguous,
the system may choose to query the user for clarification.
If verbal conveyance of the information is desired, then
natural language generation and text-to-speech synthesis
are utilized to produce the spoken responses. Throughout
the process, discourse information is maintained and fed
back to the speech recognition and language understanding

components, so that sentences can be properly understood
in context. Finally, a dialogue component manages the
interaction between the user and the computer. The nature of
the dialogue can vary significantly depending on whether the
system is creating or clarifying a query prior to accessing an
information data base, or perhaps negotiating with the user
in a post information-retrieval phase to relax or somehow
modify some aspects of the initial query.

Fig. 3 does not adequately convey the notion that a con-
versational interface may include input and output modali-
ties other than speech. While speech may be the interface
of choice, as is the case with phone-based interactions and
hands-busy/eyes-busy settings, there are clearly cases where
speech is not a good modality, especially, for example, on the
output side when the information contains maps, images, or
large tables of information, which cannot be easily explained
verbally. Human communication is inherently multimodal,
employing facial, gestural, and other cues to communicate
the underlying linguistic message. Thus, speech interfaces
should be complemented by visual and sensory motor chan-
nels. The user should be able to choose among many modali-
ties, including gesturing, pointing, writing, and typing on the
input side [20], [88], and graphics and a talking head on the
output side [55], to achieve the task in hand in the most nat-
ural and efficient manner.

The development of conversational interfaces offers a set
of significant challenges to speech and natural language re-
searchers and raises several important research issues, some
of which will be discussed in the remainder of this section.

B. Spoken Input: From Signal to Meaning

Spoken language understanding involves the transforma-
tion of the speech signal into a meaning representation that
can be used to interact with the specific application back-end.
This is typically accomplished in two steps: the conversion
of the signal to a set of words (i.e., speech recognition) and
the derivation of the meaning from the word hypotheses (i.e.,
language understanding). A discourse component is often
used to properly interpret the meaning of an utterance in the
larger context of the interaction.

1) Automatic Speech Recognition:Input to conversa-
tional interfaces is often generated extemporaneously—es-
pecially from novice users of these systems. Such sponta-
neous speech typically contains disfluencies (i.e., unfilled
and filled pauses such as “umm” and “aah,” as well as word
fragments). In addition, the input utterances are likely to
contain words outside the system’s working vocabulary—a
consequence of the fact that present-day technology can
only support the development of systems within constrained
domains. Thus far, some attempts have been made to deal
with the problem of disfluency. For example, researchers
have improved their system’s recognition performance by
introducing explicit acoustic models for the filled pauses [9],
[104]. Similarly, “trash” models have been used to detect
the presence of word fragments or unknown words [37], and
procedures have been devised to learn the new words once
they have been detected [3]. Suffice it to say, however, that
the detection and learning of unknown words continues to
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be a problem that needs our collective attention. A related
topic is utterance- and word-level rejection, in the presence
of either out-of-domain queries or unknown words [67].

An issue that is receiving increasing attention by the
research community is the recognition of telephone-quality
speech. It is not surprising that some of the first con-
versational systems available to the general public were
accessible via telephone (e.g., [5], [10], and [95]), in
many cases replacing presently existing IVR systems.
Telephone-quality speech is significantly more difficult to
recognize than high-quality recordings, because of both the
limited bandwidth and the noise and distortions introduced
in the channel [52]. The acoustic condition deteriorates
further for cellular telephones, either analog or digital.

2) Natural Language Understanding:Speech-recogni-
tion systems typically implement linguistic constraints as a
statistical language model (i.e.,-gram) that specifies the
probability of a word given its predecessors. While these
language models have been effective in reducing the search
space and improving performance, they do not begin to ad-
dress the issue of speech understanding. On the other hand,
most natural language systems are developed with text input
in mind; it is usually assumed that the entire word string is
known with certainty. This assumption is clearly false for
speech input, where many alternative words hypotheses are
competing for the same time span in any sentence hypothesis
produced by the recognizer (e.g., “euthanasia” and “youth
in Asia,”) and some words may be more reliable than others
because of varying signal robustness. Furthermore, spoken
language is often agrammatical, containing fragments,
disfluencies, and partial words. Language understanding
systems designed for text input may have to be modified in
fundamental ways to accommodate spoken input.

Natural language analysis has traditionally been predom-
inantly syntax-driven—a complete syntactic analysis is per-
formed, which attempts to account forall words in an ut-
terance. However, when working with spoken material, re-
searchers quickly came to realize that such an approach [12],
[27], [85] can break down dramatically in the presence of un-
known words, novel linguistic constructs, recognition errors,
and spontaneous speech events such as false starts.

Due to these problems, many researchers have tended to
favor more semantic-driven approaches, at least for spoken
language tasks in constrained domains. In such approaches,
a meaning representation is derived by “spotting” key words
and phrases in the utterance [105]. While this approach loses
the constraint provided by syntax, and may not be able to
adequately interpret complex linguistic constructs, the need
to accommodate spontaneous speech input has outweighed
these potential shortcomings. At the present time, many sys-
tems have abandoned the notion of achieving a completesyn-
tactic analysis of every input sentence, favoring a more ro-
bust strategy that can still be used to produce an answer when
a full parse is not achieved [42], [86], [94]. This can be ac-
complished by identifying parsable phrases and clauses and
providing a separate mechanism for gluing them together to
form a complete meaning analysis [86]. Ideally, the parser in-
cludes a probabilistic framework with a smooth transition to

parsing fragments when full linguistic analysis is not achiev-
able. Examples of systems that incorporate suchstochastic
modeling techniques can be found in [35] and [59].

How should the speech-recognition component interact
with the natural language component in order to obtain the
correct meaning representation? One of the most popular
strategies is the so-called -best interface [18], in which
the recognizer proposes its best complete sentence hy-
potheses one by one, stopping with the first sentence that is
successfully analyzed by the natural language component. In
this case, the natural language component acts as a filter on
whole sentencehypotheses. Alternatively, competing recog-
nition hypotheses can be represented in the form of a word
graph [38], which is more compact than an-best list, thus
permitting a deeper search if desired.

In an -best list, many of the candidate sentences may
differ minimally in regions where the acoustic information is
not very robust. While confusions such as “an” and “and” are
acoustically reasonable, one of them can often be eliminated
on linguistic grounds. In fact, many of the top sentence
hypotheses might be eliminated before reaching the end if
syntactic and semantic analyzes take place early on in the
search. One possible solution, therefore, is for the speech
recognition and natural language components to be tightly
coupled, so that only the acoustically promising hypotheses
that are linguistically meaningful are advanced. For example,
partial theories can be arranged on a stack, prioritized by
score. The most promising partial theories are extended using
the natural language component as a predictor of all possible
next-word candidates; none of the other word hypotheses is
allowed to proceed. Therefore, any theory that completes is
guaranteed to parse. Researchers are beginning to find that
such a tightly coupled integration strategy can achieve higher
performance than an -best interface, often with a consid-
erably smaller stack size [32], [34], [60], [106]. The future
is likely to see increasing use of linguistic analysis at earlier
stages in the recognition process.

3) Discourse: Human verbal communication is a
two-way process involving multiple, active participants.
Mutual understanding is achieved through direct and indi-
rect speech acts, turn taking, clarification, and pragmatic
considerations. A discourse ability allows a conversational
system to understand an utterance in the context of the
previous interaction. As such, discourse can be considered
to be part of the input processing stage. To communicate
effectively, a system must be able to handle phenomena such
as deictic (e.g., verbal pointing as in “I’ll take the second
one”) and anaphoric reference (e.g., using pronouns as in
“what’s their phone number”) to allow users to efficiently
refer to items currently in focus. An effective system should
also be able to handle ellipsis and fragments so that a user
does not have to fully specify each query. For instance, if a
user says, “I want to go from Boston to Denver,” followed
with, “show me only United flights,” he/she clearly does not
want to seeall United flights, but rather just the ones that fly
from Boston to Denver. The ability to inherit information
from preceding utterances is particularly helpful in the face
of recognition errors. The user may have asked a complex
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question involving several restrictions, and the recognizer
may have misunderstood a single word, such as a flight
number or an arrival time. If a good context model exists,
the user can then utter a very short correction phrase and
the system will be able to replace just the misunderstood
word, preventing the user from having to repeat the entire
utterance, running the risk of further recognition errors.

C. Output Processing: From Information to Signal

On the output side, a conversational interface must be able
to convey the information to the user in natural sounding sen-
tences. This is typically accomplished in two steps: the infor-
mation is converted into well-formed sentences, which are
then fed through a text-to-speech (TTS) system to generate
the verbal responses.

1) Natural Language Generation:Spoken language
generation serves two important roles. First and foremost, it
provides a verbal response to the user’s queries, which is es-
sential in applications where visual displays are unavailable.
In addition, it can provide feedback to the user in the form of
a paraphrase, confirming the system’s proper understanding
of the input query. Although there has been much research
on natural language generation (NLG), dealing with the
creation of coherent paragraphs (e.g., [56] and [75]), the
language generation component of a conversational system
typically produces the response one sentence at a time,
without paragraph-level planning. Research in language
generation for conversational systems has not received
nearly as much attention as has language understanding,
especially in the United States, perhaps due to the funding
priorities set forth by the major government sponsors. In
many cases, output sentences are simply word strings, in
text or prerecorded acoustic format, that are invoked when
appropriate. In some cases, sentences are generated by con-
catenating templates after filling slots by applying recursive
rules along with appropriate constraints (person, gender,
number, etc.) [31]. There has also been some recent work
using more corpus-based methods for language generation
in order to provide more variation in the surface realization
of the utterance [63].

2) Speech Synthesis:The conversion of text to speech is
the final stage of output generation. TTS systems in the past
were primarily rule driven, requiring the system developers
to possess extensive acoustic-phonetic and other linguistic
knowledge [46]. These systems are typically very intelligible
but suffer greatly in naturalness. In recent years, we have seen
the emergence of a new, concatenative approach, brought on
by inexpensive computation/storage and the availability of
large corpora [8], [81]. In this corpus-based approach, units
excised from recorded speech are concatenated to form an
utterance. The selection of the units is based on a search pro-
cedure subject to a predefined distortion measure. The output
of these TTS systems is often judged to be more natural than
that of the rule-based systems [63].

Currently in most conversational systems, the language
generation and text-to-speech components are not closely
coupled; the same text is generated whether it is to be read or
spoken. Furthermore, systems typically expect the language

generation component to produce a textual surface form of
a sentence (throwing away valuable linguistic and prosodic
knowledge) and then require the text-to-speech component
to produce linguistic analysis anew. Recently, there has been
some work in concept-to-speech generation [57]. Such a
close coupling can potentially produce higher quality output
speech than could be achieved with a decoupled system,
since it permits finer control of prosody. Whether language
generation and speech synthesis components should be
tightly integrated or can remain modular but effectively
coupled by augmenting text output with a markup language
(e.g., SABLE [93]) remains to be seen. Clearly, however,
these two components would benefit from a shared knowl-
edge base.

D. Dialogue Management

The dialogue modeling component of a conversational
system manages the interaction between the user and the
computer. The technology for building this component is
one of the least developed in the HLT repertoire, especially
for mixed-initiative dialogue systems considered in this
paper. Although there has been some theoretical work on the
structure of human–human dialogue [36], this has not led to
effective insights for building human–machine interactive
systems. As mentioned previously, there is also considerable
debate in the speech and language research communities
about whether modeling human–machine interactions after
human–human dialogues is necessary or appropriate (e.g.,
[13], [80], and [99]).

Dialogue modeling means different things to different
people. For some, it includes theplanning and problem
solving aspects of human–computer interactions [1]. In
the context of this paper, we define dialogue modeling
as the preparation, for each turn, of the system’s side of
the conversation, including verbal, tabular, and graphical
response, as well as any clarification requests.

Dialogue modeling and management serves many roles. In
the early stages of the conversation, the role of the dialogue
manager might be to gather information from the user, pos-
sibly clarifying ambiguous input along the way, so that, for
example, a complete query can be produced for the applica-
tion data base. The dialogue manager must be able to resolve
ambiguities that arise due to recognition error (e.g., “Did you
say Boston or Austin”) or incomplete specification (e.g., “On
what day would you like to travel”).

In later stages of the conversation, after information has
been accessed from the data base, the dialogue manager
might be involved in some negotiation with the user. For
example, if there were too many items returned from the
data base, the system might suggest additional constraints to
help narrow down the number of choices. Pragmatically, the
system must be able to initiate requests so that the informa-
tion can be reduced to digestible chunks (e.g., “I found ten
flights, do you have a preferred airline or connecting city”).

In addition to these two fundamental operations, the dia-
logue manager must also inform and guide the user by sug-
gesting subsequent subgoals (e.g., “Would you like me to
price your itinerary?”), offer assistance upon request, help
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relax constraints or provide plausible alternatives when the
requested information is not available (e.g., “I don’t have
sunrise information for Oakland, but in San Francisco…”),
and initiate clarification subdialogues for confirmation. In
general, the overall goal of the dialogue manager is to take an
active role in directing the conversation toward a successful
conclusion for the user.

The dialogue manager can influence other system com-
ponents by, for example, dynamically making dialogue con-
text-dependent adjustments to language models or discourse
history. At the highest level, it can help detect the appropriate
broad subdomain (e.g., weather, air travel, or urban naviga-
tion). Within a particular domain, certain queries could in-
troduce a focus of attention on a subset of the lexicon. For
instance, in a dialogue about a trip to France, the initial user
utterance, “I’m planning a trip toFrance,” would allow the
system to greatly enhance the probabilities on all the French
destinations. Finally, whenever the system asks a directed
question, the language model probabilities can be altered so
as to favor appropriate responses to the question. For ex-
ample, when the system asks the user to provide a date of
travel, the system could temporarily enhance the probabili-
ties of date expressions in the response.

There are many ways dialogue management has been im-
plemented. Many systems use a type of scripting language
as a general mechanism to describe dialogue flow (e.g., [15],
[90], and [95]). Other systems represent dialogue flow by
a graph of dialogue objects or modules (e.g., [5] and [98]).
Another aspect of system implementation is whether or not
the active vocabulary or understanding capabilities change
depending on the state of the dialogue. Some systems are
structured to allow a user to ask any question at any point
in the dialogue so that the entire vocabulary is active at all
times. Other systems restrict the vocabulary and/or language
that can be accepted at particular points in the dialogue. The
tradeoff is generally one of increased user flexibility (in re-
acting to a system response or query), and one of increased
system understanding accuracy, due to the constraints on the
user input.

III. RECENT PROGRESS

In the past decade there has been increasing activity in the
area of conversational systems, largely due to government
funding in the United States and Europe. By the late 1980s,
the DARPA spoken language systems (SLS) program was
initiated in the U.S., while the Esprit SUNDIAL (Speech
Understanding and dialogue) program was under way in
Europe [69]. The task domains for these two programs were
remarkably similar in that both involved data base access for
travel planning, with the European one including both flight
and train schedules and the American one being restricted to
air travel. The European program was a multilingual effort
involving four languages (English, French, German, and
Italian), whereas the American effort was, understandably,
restricted to English. All of the systems focused within a
narrowly defined area of expertise, and vocabulary sizes
were generally limited to several thousand words. Nowa-

days, these types of systems can typically run in real-time on
standard workstations and PCs with no additional hardware.

Strictly speaking, the DARPA SLS program cannot
be considered conversational in that its attention focused
entirely on the input side. However, since the technology
developed during the program had a significant impact on
the speech understanding methods used by conversational
systems, it is worth describing in more detail. The program
adopted the approach of developing the underlying input
technologies within a common domain called Air Travel In-
formation Service (ATIS) [74]. ATIS permits users to query
for air travel information, such as flight schedules from one
city to another, obtained from a small, static relational data
base excised from the Official Airline Guide. By requiring
that all system developers use the same data base, it was
possible to compare the performance of various spoken
language systems based on their ability to extract the correct
information from the data base, using a set of prescribed
training and test data and a set of interpretation guidelines.
Indeed, common evaluations occurred at regular intervals,
and steady performance improvements were observed for
all systems. At the end of the program, the best system
achieved a word error rate of 2.3% and a sentence error
rate of 15.2% [66]. Additionally, the best system achieved
an understanding error rate of 5.9% and 8.9% for text and
speech input, respectively.4

The European SUNDIAL project differed in several ways
from the DARPA SLS program. Whereas the SLS program
had regular common evaluations, the SUNDIAL project
had none. Unlike the SLS program however, the SUNDIAL
project aimed at building systems that could be publicly
deployed. For this reason, the SUNDIAL project designated
dialogue modeling and spoken language generation as
integral parts of the research program. As a result, this has
led to some interesting advances in Europe in dialogue
control mechanisms.

Since the end of the SLS and SUNDIAL programs in 1995
and 1993, respectively, there have been other sponsored
programs in spoken dialogue systems. In the recently com-
pleted Automatic Railway Information Systems for Europe
(ARISE) project, which was a part of the LE3 program,
participants developed train timetable information systems
covering three different languages (Dutch, French, and
Italian) [23]. Groups explored alternative dialogue strategies
and investigated different technology issues. Four proto-
types underwent substantial testing and evaluation (e.g.,
[17], [49], and [82]). In the United States, a new DARPA
funded project called Communicator has begun, which
emphasizes dialogue-based interactions incorporating both
speech input and output technologies. One of the properties
of this program is that participants are using a common
system architecture to encourage component sharing across
sites [89]. Participants in this program are developing both
their own dialogue domains and a common complex travel
task (e.g., [28]).

4All the performance results quoted here are for the “evaluable” queries,
i.e., those queries that are within domain and for which an appropriate an-
swer is available from the data base.
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Table 2 A Comparison of Several Conversational Systems that have been Deployed and Used by
Real Users

In addition to the research sponsored by these larger pro-
grams, there have been many other independent initiatives
as well. Although there are far too many to list here, some
examples include the Berkeley Restaurant Project (BeRP),
which provided restaurant information in the Berkeley, CA,
area [43]. The AT&T AutoRes system allowed users to make
rental car reservations over the phone via a toll-free number
[54]. Their “How may I help you?” system provides call
routing services and information [35]. The Waxholm system
provides ferry timetables and tourist information for the
Stockholm archipelago [11]. At the University of Rochester,
the TRAINS project involved train schedule planning [1].

One of the most noticeable trends in spoken dialogue sys-
tems is the increasing number of publicly deployed systems.
Such systems include not only research prototypes but also
commercial products which are used on a much wider scale
for domains such as call routing, stock quotes, train sched-
ules, and flight reservations. (e.g., [4], [5], and [10]).

Although it can be difficult to compare different systems,
it is interesting to observe some of their basic properties.
Table 2 shows some statistics of several different systems
which have been deployed and used by real users. Each
system is characterized in terms of the domain of operation,
language, vocabulary size, and the average number of words
per utterance and utterances per dialogue. The systems are
listed in increasing order of average number of words per ut-
terance. The first three systems are examples of commercial
products and/or have been deployed on a very large scale
(i.e., fielding millions of calls): the CSELT train timetable
information system [10], the SpeechWorks air travel reser-
vation system [5], and the Philips TABA train timetable
information system [95]. The second group of six systems
are examples of research prototypes which have been made
publicly available on a smaller scale. They include movie
information and air travel reservation systems developed at
CMU5 [79], the LIMSI train timetable information system
[76], weather and air travel information systems developed
at MIT [91], [110], and the AT&T “How may I help you?”
operator assistance system [35]. The final statistics were
computed from a set of 66 air travel reservation transactions
between customers and agents, which were transcribed by
SRI [47].

5CMU Movieline: http://www.speech.cs.cmu.edu/Movieline.

From the table, we can see that most of these systems
have vocabulary sizes in the thousands, although for other
domains such as stock quotes, the vocabulary size could be
considerably larger. It is interesting to observe that the av-
erage number of words per utterance tends to increase as one
moves from commercial systems, to research prototypes, to
human–human dialogues. Naturally, there are many factors
that affect averages, including the basic nature of the appli-
cation. However, it is likely that systems that employ more
system-initiative or directed dialogues (by asking the user to
answer specific questions) or that require explicit confirma-
tions would also tend to have fewer words per utterance on
average. It is also apparent that none of the human–machine
dialogues was as wordy as those between humans.

IV. DEVELOPMENT ISSUES

Spoken dialogue systems require first and foremost
the availability of high-performance human language tech-
nology components such as speech recognition and language
understanding. However, the development of these systems
also demands that we pay close attention to a host of other
issues. While many of these issues may have little to do with
human language technologiesper se, they are nonetheless
crucial to successful system development. In this section,
we will outline some of these development issues.

A. Working in Real Domains

The objective for developing a conversational interface is
to provide a natural way for any user, especially the com-
puter illiterate, to access and manage information. Since hu-
mans will ultimately be consumers of this technology, it is
important that the systems be developed with their behav-
iors and needs in mind. An effective strategy, and one that
we subscribe to, involves the development of the underlying
technologies withinreal application domains, rather than re-
lying on artificial scenarios, however realistic they might be.
Such a strategy will force us to confront some of the critical
research issues that may otherwise elude our attention, such
as dialogue modeling, new word detection/learning, confi-
dence scoring, robust recognition of accented speech, and
portability across domains and languages. We also believe
that working on real applications has the potential benefit
of shortening the interval between technology demonstration
and its deployment. Above all, real applications that can help
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Fig. 4. Averaged number of dialogue turns for several application
domains.

people solve problems will be used by real users, thus pro-
viding us with a rich and continuing source of useful data.
These data are far more useful than anything we could col-
lect in a laboratory environment.

What constitutes real domains and real users? One may
rightfully argue that only commercially deployed systems ca-
pable of providing robust and scalable solutions can truly be
considered real. A laboratory prototype that is only available
to the public via perhaps a single phone line is quite different
from a commercially deployed system. Nevertheless, we be-
lieve a research strategy that incorporates as much realism
as possible early into the system’s research and development
life cycle is far more preferable to one that attempts to de-
velop the underlying technologies in a concocted scenario.
At the very least, a research prototype capable of providing
real and useful information, made available to a wide range
of users, offers a valuable mechanism for collecting data that
will benefit the development of both types of systems. We
will illustrate this point in the next section with one of the
systems we have developed at MIT.

How do we select the applications that are well matched
to our present capabilities? The answer may lie in exam-
ining human–human data. Fig. 4 displays the average number
of dialogue turns per transaction for several application do-
mains. The data are obtained from the same transcription of
the 100 hours of real human–human interactions described
earlier. As the data clearly show, helping a user select a movie
or a restaurant is considerably less complex than helping a
user look for employment.

B. Data Collection

Developing conversational interfaces is a classic chicken
and egg problem. In order to develop the system capabilities,
one needs to have a large corpus of data for system devel-
opment, training, and evaluation. In order to collect data that
reflect actual usage, one needs to have a system that users can
speak to. Fig. 5 illustrates a typical cycle of system develop-
ment. For a new domain or language, one must first develop
some limited natural language capabilities, thus enabling an
“experimenter-in-the-loop,” orwizard-of-oz, data collection
paradigm, in which an experimenter types the spoken sen-
tences to the system after removing spontaneous speech ar-
tifacts. This process has the advantage of eliminating poten-
tial recognition errors. The resulting data are then used for
the development and training of the speech recognition and

Fig. 5. Illustration of data collection procedures.

natural language components. As these components begin to
mature, it becomes feasible to collect more data using the
“system-in-the-loop,” orwizardless, paradigm, which is both
more realistic and more cost effective. Performance evalua-
tion using newly collected data will facilitate system refine-
ment.

The means and scale of data collection for system devel-
opment and evaluation have evolved considerably over the
past decade. This is true for both the speech recognition and
speech understanding communities, and can be seen in many
of the systems in the recent ARISE project [23] and else-
where. At MIT, for example, the Voyager urban navigation
system was developed in 1989 by recruiting 100 subjects to
come to our laboratory and ask a series of questions to an
initial wizard-based system [30]. In contrast, the data col-
lection procedure for the more recent Jupiter weather in-
formation system consists of deploying a publicly available
system and recording the interactions [110]. There are large
differences in the number of queries, the number of users,
and the range of issues that the data provide. By using a
system-in-the-loop form of data collection, system develop-
ment and evaluation become iterative procedures. If unsuper-
vised methods were used to augment the system ASR and
NLU capabilities, system development could become con-
tinuous (e.g., [45]).

Fig. 6 shows, over a two-year period, the cumulative
amount of data collected from real users using the MIT
Jupiter system and the corresponding word error rates
(WERs) of our recognizer. Before we made the system
accessible through a toll-free number, the WER was about
10% for laboratory collected data. The WER more than
tripled during the first week of data collection. As more data
were collected, we were able to build better lexical, lan-
guage, and acoustic models. As a result, the WER continued
to decrease over time. This negative correlation suggests that
making the system available to real users is a crucial aspect
of system development. If the system can provide real and
useful information to users, they will continue to call, thus
providing us with a constant supply of useful data. However,
in order to get users to actually use the system, it needs to
be providing “real” information to the user. Otherwise, there
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Fig. 6. Comparison of recognition performance and the number of
utterances collected from real users over time in the MIT weather
domain. Note that thex-axis has a nonlinear time scale, reflecting
the time when new versions of the recognizer were released.

is little incentive for people to use the system other than to
play around with it, or to solve toy problem scenarios that
may or may not reflect problems of interest to real users.

C. Evaluation

One of the issues that developers of spoken dialogue sys-
tems face is how to evaluate progress, in order to determine
if they have created a usable system. Developers must de-
cide what metrics to use to evaluate their systems to ensure
that progress is being made. Metrics can include component
evaluations but should also assess the overall performance of
their system.

For systems that conduct a transaction, it is possible to tell
whether or not a user has completed a task. In these cases, it
is also possible to measure accompanying statistics such as
the length of time to complete the task, the number of turns,
etc. It has been noted, however, that such statistics may not be
as important as user satisfaction (e.g., [77]). For example, a
spoken dialogue interface may take longer than some alterna-
tive, yet users may prefer it due to other factors (less stressful,
hands-free, etc). A better form of evaluation might be a mea-
sure of whether users liked the system, whether they called
to perform a real task (rather than browsing), and whether
they would use it again, or recommend it to others. Evalua-
tion frameworks such as Paradise [100] attempt to correlate
system measurements with user satisfaction in order to better
quantify these effects [101].

Although there have been some recent efforts in evalu-
ating language output technologies (e.g., TTS comparisons
[83]), evaluation methods for ASR and NLU have been more
common since they are more amenable to automatic evalua-
tion methods where it is possible to decide what is a correct
answer. ASR evaluation has tended to be the most straightfor-
ward, although there are a range of phenomena that are not
necessarily obvious how to evaluate (e.g., crosstalk, mum-
bling, partial words). NLU evaluation can also be performed
by comparing some form of meaning representation with a
reference. In [73], for example, two metrics are measured
on an utterance-by-utterance basis, which attempt to assess
the performance of discourse and dialogue in addition to
ASR and NLU. The first measures the average number of at-
tributes introduced per query (a measure of information rate),
while the second measures how many turns it took, on av-
erage, for an intended attribute to be transmitted successfully
to the system (a measure of user frustration).

One problem with NLU evaluation is that there is no
common meaning representation among different research
sites, so cross-site comparison becomes difficult. In the
DARPA SLS program, for example, the participants ulti-
mately could agree only on comparing to an answer coming
from a common data base. Unfortunately, this necessarily
led to the creation of a large document defining principals
of interpretation for all conceivable queries [40]. In order
to keep the response across systems consistent, systems
were restricted from taking the initiative, which is a major
constraint on dialogue research.

One way to show progress for a particular system is to
perform longitudinal evaluations for recognition and under-
standing. In the case of Jupiter, as shown in Fig. 6, we con-
tinually evaluate on standard test sets, which we can redefine
periodically in order to keep from tuning to a particular data
set [72], [110]. Since data continually arrive, it is not diffi-
cult to create new sets and reevaluate older system releases
on these new data.

Some systems make use of dialogue context to provide
constraints for recognition, e.g., favoring candidate hy-
potheses that mention a date after the system has just asked
for a date. Thus, any reprocessing of utterances in order
to assess improvements in recognition or understanding
performance at a later time need to be able to take advantage
of the samedialogue context as was present in the original
dialogue with the user. To do this, the dialogue context must
be recorded at the time of data collection and reutilized in
the subsequent off-line processing, in order to avoid giving
the original system an unwarranted advantage [73].

V. CHALLENGES

As we can see, considerable progress has been made over
the past decade in research and development of systems that
can understand and respond to spoken language. To meet the
challenges of developing a language-based interface to help
users solve real problems, however, we must continue to im-
prove the core technologies while expanding the scope of the
underlying human language technology base. In this section,
we highlight some of the new research challenges that de-
serve our collective attention, realizing that the list is but a
sampling of the entire landscape.

A. Spoken Language Understanding

The development of conversational systems shares many
of the research challenges being addressed by the speech
recognition community for other applications such as speech
dictation and spoken document retrieval, although the recog-
nizer is often exercised in different ways. For example, in
contrast to desktop dictation systems, the speech recognition
component in a conversational system is often required to
handle a wide range of channel variations. Increasingly, land-
line and cellular phones are the transducer of choice, thus re-
quiring the system to deal with narrow channel bandwidths,
low signal-to-noise ratios, diversity in handset characteris-
tics, dropout, and other artifacts. In many situations where
speech input is especially appropriate (e.g., hands-busy/eyes-
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busy), there can be significant background noise (e.g., cars)
and possibly stress on the part of the speaker. Robust con-
versational systems will be required to handle these types of
phenomena.

Another problem that is particularly acute for conversa-
tional systems is the recognition of speech from a diverse
speaker population. In the data we collected for Jupiter, for
example, we observed a significant number of children, as
well as users, with strong dialects and nonnative accents. The
challenge posed by these data to speaker-independent recog-
nition technology must be met [53], since conversational in-
terfaces are intended to serve people from all walks of life.

A solution to these channel and speaker variability prob-
lems may be adaptation. For applications in which the entire
interaction consists of only a few queries, short-term adapta-
tion using only a small amount of data would be necessary.
For applications where the user identity is known, the system
can make use of user profiles to adapt not only acoustic-pho-
netic characteristics but also pronunciation, vocabulary, lan-
guage, and possibly domain preferences (e.g., user lives in
Boston, prefers aisle seat when flying).

An important problem for conversational systems is the
detection and learning of new words. In a domain such as
Jupiter or electronic Yellow Pages, a significant fraction
of the words uttered by users may not be in the system’s
working vocabulary. This is unavoidable partly because it
is not possible to anticipate all the words that all users are
likely to use, and partly because the data base is usually
changing with time (e.g., new restaurants opening up). In
systems such as Jupiter, users will sometimes try to help the
system with unknown city names by spelling the word (e.g.,
“I said B A N G O R,Bangor”), or emphasizing the syllables
in the word (which usually leads to worse results). In the
past, we have not paid much attention to the unknown word
problem because the tasks the speech-recognition commu-
nity has chosen often assume a closed vocabulary. In the
limited cases where the vocabulary has been open, unknown
words have accounted for a small fraction of the word tokens
in the test corpus. Thus, researchers could either construct
generic “trash word” models and hope for the best, or ignore
the unknown word problem altogether and accept a small
penalty on word error rate. In real applications, however, the
system must be able to cope with unknown words simply
because they will always be present, and ignoring them will
not satisfy the user’s needs—if a person wants to know how
to go from the train station to a restaurant whose name is
unknown to the system, they will not settle for a response
such as, “I am sorry, I don’t understand you. Please rephrase
the question.” The system must be able not only todetect
new words, taking into account acoustic, phonological, and
linguistic evidence, but also to adaptivelyacquire them, in
terms of both their orthography and linguistic properties.
In some cases, fundamental changes in the problem formu-
lation and search strategy may be necessary. While some
research is being conducted in this area [3], [37], much more
work remains to be done.

For simple applications such as auto-attendant, it is pos-
sible for a conversational system to achieve “understanding”

without utilizing sophisticated natural language processing
techniques. For example, one could perform keyword or
phrase spotting on the recognizer’s output to obtain a
meaning representation. As the interactions become more
complex, involving multiple turns, the system may need
more advanced natural language analysis in order to achieve
understanding in context.

Although there are many examples in the literature
of both partial and fully unsupervised learning methods
applied to natural language processing, NLU in the context
of conversational systems remains mainly a knowledge
intensive process. Even stochastic approaches that can learn
the linguistic regularities automatically require that a large
corpus be properly annotated with syntactic and semantic
tags [35], [59], [68]. One of the continuing challenges facing
researchers is the discovery of processes that can automate
the discovery of linguistic facts.

Competing strategies to achieve robust understanding have
been explored in the research community. For example, the
system could adopt the strategy of first performing word- and
phrase-spotting and rely on full linguistic analysis only when
necessary. Alternatively, the system could first perform full
linguistic analysis in order to uncover the linguistic struc-
ture of the utterance and relax the constraints through robust
parsing and word/phrase-spotting only when full linguistic
analysis fails. At this point, it is not clear which of these
strategies would yield the best performance. Continued in-
vestigation is clearly necessary.

B. Spoken Language Generation

With few exceptions, current research in spoken language
systems has focused on the input side, i.e., the understanding
of the input queries, rather than theconveyanceof the
information. It is interesting to observe, however, that the
speech synthesis component is the one that often leaves
the most lasting impression on users—especially when it
does not sound especially natural. As such, more natural
sounding speech synthesis will be an important research
topic for spoken dialogue systems in the future.

Spoken language generation is an extremely important
aspect of the human–computer interface problem, especially
if the transactions are to be conducted over a telephone.
Models and methods must be developed that will generate
natural sentences appropriate for spoken output across
many domains and languages. For applications where all
information must be conveyed aurally, particular attention
must be paid to the interaction between language generation
and dialogue management—the system may have to initiate
a clarification subdialogue to reduce the amount of infor-
mation returned from the back-end, in order not to generate
unwieldy verbal responses.

As mentioned earlier, recent work in speech synthesis
based on nonuniform units has resulted in much improved
synthetic speech quality [41], [81]. However, we must
continue to improve speech synthesis capabilities, particu-
larly with regard to the encoding of prosodic and possibly
paralinguistic information such as emotion. As is the case
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on the input side, we must also explore integration strategies
for language generation and speech synthesis. Finally,
evaluation methodologies for spoken language generation
technology must be continued to be developed and more
comparative evaluations performed [83].

Many researchers have observed that the precise wording
of the system response can have a large impact on the user
response. In general, the more vaguely worded response will
result in the larger variation of inputs [5], [76]. Which type of
response is more desirable will perhaps depend on whether
the system is used for research or commercial purposes. If
the final objective is to improve understanding of a wider
variety of input, then a more general response might be more
appropriate. A more directed response, however, would most
likely improve performance in the short term.

The language generation used by most spoken dialogue
systems tends to be static, using the identical response
pattern in its interaction with users. While it is quite possible
that users will prefer consistent feedback from a system,
we have observed that introducing variation in the way we
prompt users for additional queries (e.g., “Is there anything
else you’d like to know?” “Can I help you with anything
else?” “What else?”) is quite effective in making the system
appear less robotic and more natural to users. It would be
interesting to see if a more stochastic language generation
capability would be well received by users. In addition,
the ability to vary the prosody of the output (e.g., apply
contrastive stress to certain words) also becomes important
in reducing the monotony and unnaturalness of speech
responses.

A more philosophical question for language generation is
whether or not to personify the system in its responses to
users. Naturally, there are varied opinions on this matter. In
many situations we have found that an effective response is
one commonly used in human–human interaction (e.g., “I’m
sorry”). Users do not seem to be bothered by the personifi-
cation evident in our deployed systems.

Although prosody impacts both speech understanding and
speech generation, prosodic features have been most widely
incorporated into text-to-speech systems. However, there
have been attempts to make use of prosodic information
for both recognition and understanding [39], [64], [84],
and it is hopeful that more research will appear in this area
in the future. In the Verbmobil project, researchers have
been able to show considerable improvement in processing
speed when integrating prosodic information into the search
component during recognition [62].

C. Dialogue Management

In most current dialogue systems, the design of the
dialogue strategy is typically hand-crafted by the system
developers, and as such is largely based on their intuition
about the proper dialogue flow. This can be a time-consuming
process, especially for mixed-initiative dialogues, whose
result may not generalize to different domains. There has
been some recent research exploring the use of machine
learning techniques to automatically determine dialogue

strategy [51]. Regardless of the approach, however, there
is the need to develop the necessary infrastructure for
dialogue research. This includes the collection of dialogue
data, both human–human and human–machine. These data
will need to be annotated, after developing annotation tools
and establishing proper annotation conventions. In the past
decade, speech recognition and language understanding
communities have benefited from the availability of large,
annotated corpora. Similar efforts are desperately needed
for dialogue modeling. Organizations such as the Special
Interest Group on Dialogue (SIGdial) of the Association
for Computational Linguistics aim to advance dialogue
research in areas such as portability, evaluation, resource
sharing, and standards, among others.6

Since we are far from being able to develop omnipotent
systems capable of unrestricted dialogue, it is necessary for
current systems to accurately convey their limited capabil-
ities to the user, including both the domain of knowledge
of the system itself and the kind of speech queries that the
system can understand. While expert users can eventually
become familiar with at least a subset of the system capa-
bilities, novices can have considerable difficulty if their ex-
pectations are not well matched with the system capabilities.
This issue is particularly relevant for mixed-initiative dia-
logue systems; by providing more flexibility and freedom to
users to interact with the system, one could potentially in-
crease the danger of them straying out of the system’s do-
main of expertise. For example, our Jupiter system knows
only short-term weather forecasts, yet users ask a wide va-
riety of legitimate weather questions (e.g., “What’s the av-
erage rainfall in Guatemala in January?” or, “When is high
tide tomorrow?”) that are outside the system’s capabilities,
along with a wide variety of nonweather queries. Even if
users are aware of the system’s domain of knowledge, they
may not know therangeof knowledge within the domain.
For example, Jupiter does not know all 23 000 cities in the
United States, so it is necessary to be able to detect when a
user is asking for an out-of-vocabulary city, and then help in-
form the user what cities the system knows without listing all
possibilities. Finally, even if the user knows the full range of
capabilities of the system, he/she may not know what type of
questions the system is able to understand.

In order to assist users to stay within the capabilities of the
system, some form of “help” capability is required. However,
it is difficult to provide help capabilities since users may not
know when to ask for it, and when they do, the help request
may not be explicit, especially if they do not understand why
the system was misbehaving in the first place. Regardless, the
help messages will clearly need to be context dependent, with
the system offering the appropriate suggestions depending on
the dialogue states.

Another challenging area of research is the recovery from
the inevitable misunderstandings that a system will make. Er-
rors could be due to many different phenomena (e.g., acous-
tics, speaking style, disfluencies, out-of-vocabulary words,
parse coverage, or understanding gaps), and it can be difficult

6SIGdial: http://www.sigdial.org/.
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to detect that there is a problem, determine what the problem
is caused by, and convey to the user an appropriate response
that will fix the problem.

Many systems incorporate some form of confidence
scoring to try to identify problematic inputs (e.g., [5]
and [44]). The system can then either try an alternative
strategy to help the user, or back off to a more directed
dialogue and/or one that requires explicit confirmation [76],
[79], [96]. Based on our statistics with Jupiter, however,
we have found that when an utterance is rejected, it is
highly likely that the next utterance will be rejected as
well [67]. Thus, it appears that certain users have an
unfortunate tendency to go into a rejection death spiral
that can be hard to get out of. Using confidence scoring
to perform partial understanding might allow for more
refined corrective dialogue (e.g., requesting input of only
the uncertain regions). Partial understanding may also help
in identifying out-of-vocabulary words and enable more
constructive feedback from the system about the possible
courses of action (e.g., “I heard you ask for the weather
in a city in New Jersey. Can you spell it for me?”).

Spoken dialogue systems can behave quite differently de-
pending on what input and output modalities are available to
the user. In displayless environments such as the telephone,
it might be necessary to tailor the dialogue so as not to over-
whelm the user with information. When displays are avail-
able, however, it may be more desirable to simply summa-
rize the information to the user, and to show them a table
or image, etc. Similarly, the nature of the interaction will
change if alternative input modalities, such as pen or ges-
ture, are available to the user. Which modality is most effec-
tive will depend, among other things, on environment (e.g.,
classroom), user preference, and perhaps dialogue state [65].

Researchers are also beginning to study the addition of
back-channel communication in spoken dialogue responses
in order to make the interaction more natural. Prosodic infor-
mation from fundamental frequency and duration appear to
provide important clues as to when back-channeling might
occur [61], [107]. Intermediate feedback from the system
can also be more informative to the user than silence or idle
music when inevitable delays occur in the dialogue (e.g.,
“Hold on while I look for the cheapest price for your flight
to London…”).

Finally, many systems are able to handle interruptions by
allowing the user to “barge in” over the system response (e.g.,
[5], [79]). To date, barge-in has been treated primarily as
an acoustic problem, with perhaps some interaction with a
speech recognizer. However, it clearly should also be viewed
as an understanding problem, so that the system can differ-
entiate among different types of input such as noise, back-
channel, or a significant question or statement, and take ap-
propriate actions. In addition, it will be necessary to prop-
erly update the dialogue status to reflect the fact that barge-in
occurred. For example, if the system was reading a list of
flights, the system might need to remember where the inter-
ruption occurred—especially if the interruption was under-
specified (e.g., “I’ll take the United flight” or “Tell me about
that one”).

D. Portability

Creating a robust, mixed-initiative dialogue system
can require a tremendous amount of effort on the part of
researchers. In order for this technology to ultimately be
successful, the process of porting existing technology to
new domains and languages must be made easier. Over time,
researchers have made the technology more modular.

Over the past few years, different research groups have
been attempting to make it easier for nonexperts to create
new domains. Systems that modularize their dialogue man-
ager try to take advantage of the fact that a dialogue can
often be broken down into a set of smaller subdialogues (e.g.,
dates, addresses), in order to make it easier to construct dia-
logue for a new domain (e.g., [5] and [98]). For example, re-
searchers at OGI have developed rapid development kits for
creating spoken dialogue systems, which are freely available
[98] and which have been used by students to create their
own systems [97]. On the commercial side, there has been
a significant effort to develop the Voice eXtensible Markup
Language (VoiceXML) as a standard to enable internet con-
tent and information access via voice and phone.7 To date,
these approaches have been applied only to directed dialogue
strategies. Much more research is needed in this area if we
are to try to allow systems with complex dialogue strategies
to generalize to different domains.

Currently, the development of speech recognition and
language understanding technologies has been domain and
language specific, requiring a large amount of annotated
training data. However, it may be costly, or even impos-
sible, to collect a large amount of training data for certain
applications or languages. Therefore, we must address the
problems of producing a conversational system in a new
domain and language given at most a small amount of
domain-specific training data. To achieve this goal, we must
strive to cleanly separate the algorithmic aspects of the
system from the application-specific aspects. We must also
develop automatic or semiautomatic methods for acquiring
the acoustic models, language models, grammars, semantic
structures for language understanding, and dialogue models
required by a new application. The issue of portability
spans across different acoustic environments, data bases,
knowledge domains, and languages. Real deployment of
multilingual spoken language technology cannot take place
without adequately addressing this issue.

VI. CONCLUDING REMARKS

In this paper, we have attempted to outline some of the
important research challenges that must be addressed before
spoken language technologies can be put to pervasive use.
The timing for the development of human language tech-
nology is particularly opportune, since the world is mobi-
lizing to develop the information highway that will be the
backbone of future economic growth. Human language tech-
nology will play a central role in providing an interface that

7VoiceXML: http://www.voicexml.org/.
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will dramatically change the human–machine communica-
tion paradigm fromprogrammingto conversation. It will en-
able users to efficiently access, process, manipulate, and ab-
sorb a vast amount of information. While much work needs
to be done, the progress made collectively by the community
thus far gives us every reason to be optimistic about fielding
such systems, albeit with limited capabilities, in the near fu-
ture.
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